The IDEAL framework for surgical robotics: development, comparative evaluation and long-term monitoring

The IDEAL framework for surgical robotics: development, comparative evaluation and long-term monitoring
  • Lee, N. Robotic surgery: where are we now? Lancet 384, 1417 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Kwoh, Y. S., Hou, J., Jonckheere, E. A. & Hayati, S. A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery. IEEE Trans. Biomed. Eng. 35, 153–160 (1988).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Peters, B. S., Armijo, P. R., Krause, C., Choudhury, S. A. & Oleynikov, D. Review of emerging surgical robotic technology. Surg. Endosc. 32, 1636–1655 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Maynou, L., Pearson, G., McGuire, A. & Serra-Sastre, V. The diffusion of robotic surgery: examining technology use in the English NHS. Health Policy 126, 325–336 (2022).

    Article 
    PubMed 

    Google Scholar 

  • The Lancet. Robotic surgery evaluation: 10 years too late. Lancet 388, 1026 (2016).

  • Christensen, C. M., Baumann, H., Ruggles, R. & Sadtler, T. M. Disruptive innovation for social change. Harv. Bus. Rev. 84, 94–101 (2006).

    PubMed 

    Google Scholar 

  • Tan, W. S., Ta, A. & Kelly, J. D. Robotic surgery: getting the evidence right. Med J. Aust. 217, 391–393 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vasey, B. et al. Intraoperative applications of artificial intelligence in robotic surgery: a scoping review of current development stages and levels of autonomy. Ann. Surg. (2023).

  • Ergina, P. L., Barkun, J. S., McCulloch, P., Cook, J. A. & Altman, D. G. IDEAL framework for surgical innovation 2: observational studies in the exploration and assessment stages. BMJ 346, f3011 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hirst, A. et al. No surgical innovation without evaluation: evolution and further development of the IDEAL framework and recommendations. Ann. Surg. 269, 211–220 (2019).

    Article 
    PubMed 

    Google Scholar 

  • NIHR. REINFORCE: a real-world, in-situ, evaluation of the introduction and scale-up of robot-assisted surgical services in the NHS. ARC https://arc-nenc.nihr.ac.uk/projects/reinforce-a-real-world-in-situ-evaluation-of-the-introduction-and-scale-up-of-robot-assisted-surgical-services-in-the-nhs/

  • Sheetz, K. H., Claflin, J. & Dimick, J. B. Trends in the adoption of robotic surgery for common surgical procedures. JAMA Netw. Open 3, e1918911 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Future of Surgery Commission Group. The Commission on the Future of Surgery. (2018).

  • McCulloch, P., Cook, J. A., Altman, D. G., Heneghan, C. & Diener, M. K. IDEAL framework for surgical innovation 1: the idea and development stages. BMJ 346, f3012 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cook, J. A. et al. IDEAL framework for surgical innovation 3: randomised controlled trials in the assessment stage and evaluations in the long term study stage. BMJ 346, f2820 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Marcus, H. J. et al. IDEAL-D framework for device innovation: a consensus statement on the preclinical stage. Ann. Surg. (2021).

    Article 
    PubMed 

    Google Scholar 

  • UK Statutory Instruments, UK Government. The Medical Devices Regulations 2002. 2002 no. 618 (King’s Printer of Acts of Parliament).

  • Official Journal of the European Union. Regulation (EU) 2017/745 of the European Parliament and of the Council of 5 April 2017 on medical devices, amending Directive 2001/83/EC, Regulation (EC) No 178/2002 and Regulation (EC) No 1223/2009 and repealing Council Directives 90/385/EEC and 93/42/EEC. vol. 117 (2017).

  • International Electrotechnical Commission. Amendment 1 – medical electrical equipment – part 1-2: general requirements for basic safety and essential performance – collateral standard: electromagnetic disturbances – requirements and tests. IEC 60601-1-2:2014/AMD1 (2020).

  • International Organization for Standardization. Quality management and corresponding general aspects for products with a health purpose including medical devices. IEC 62304:2006.

  • International Organization for Standardization. Medical electrical equipment Part 2-77: Particular requirements for the basic safety and essential performance of robotically assisted surgical equipment. IEC 80601-82:2019.

  • International Organization for Standardization. Medical devices—quality management systems—requirements for regulatory purposes. ISO 13485:2016.

  • Foote, S. B. Managing the Medical Arms Race: Innovation and Public policy in the Medical Device Industry (Univ. California Press, 1992).

  • Yang, G. -Z. et al. Medical robotics—regulatory, ethical, and legal considerations for increasing levels of autonomy. Sci. Robot 2, eaam8638 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Andras, I. et al. Artificial intelligence and robotics: a combination that is changing the operating room. World J. Urol. 38, 2359–2366 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Bhandari, M., Zeffiro, T. & Reddiboina, M. Artificial intelligence and robotic surgery: current perspective and future directions. Curr. Opin. Urol. 30, 48–54 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Panesar, S. et al. Artificial intelligence and the future of surgical robotics. Ann. Surg. 270, 223–226 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Hung, A. J. et al. Development and validation of objective performance metrics for robot-assisted radical prostatectomy: a pilot study. J. Urol. 199, 296–304 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Ashley, L., Armitage, G., Neary, M. & Hollingsworth, G. A practical guide to failure mode and effects analysis in health care: making the most of the team and its meetings. Jt. Comm. J. Qual. Patient Saf. 36, 351–358 (2010).

    PubMed 

    Google Scholar 

  • Vasey, B. et al. Reporting guideline for the early stage clinical evaluation of decision support systems driven by artificial intelligence: DECIDE-AI. BMJ 377, e070904 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schreyer, J. et al. RAS-NOTECHS: validity and reliability of a tool for measuring non-technical skills in robotic-assisted surgery settings. Surg. Endosc. 36, 1916–1926 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Raison, N. et al. Development and validation of a tool for non-technical skills evaluation in robotic surgery-the ICARS system. Surg. Endosc. 31, 5403–5410 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Catchpole, K. et al. Human factors integration in robotic surgery. Hum. Factors (2022).

  • O’Sullivan, S. et al. Legal, regulatory, and ethical frameworks for development of standards in artificial intelligence (AI) and autonomous robotic surgery. Int. J. Med. Robot 15, e1968 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Rogers, W. A., Hutchison, K. & McNair, A. Ethical issues across the IDEAL stages of surgical innovation. Ann. Surg. 269, 229–233 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Møller, L. et al. Identifying curriculum content for operating room nurses involved in robotic-assisted surgery: a Delphi study. Surg. Endosc. (2022).

    Article 
    PubMed 

    Google Scholar 

  • Lawrie, L. et al. Current issues and future considerations for the wider implementation of robotic-assisted surgery: a qualitative study. BMJ Open 12, e067427 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lawrie, L. et al. Barriers and enablers to the effective implementation of robotic assisted surgery. PLoS ONE 17, e0273696 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Woudstra, K., Reuzel, R., Rovers, M. & Tummers, M. An overview of stakeholders, methods, topics, and challenges in participatory approaches used in the development of medical devices: a scoping review. Int. J. Health Policy Manag 12, 6839 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • van der Wilt, G. J., Gerhardus, A. & Oortwijn, W. Toward integration in the context of health technology assessment: the need for evaluative frameworks. Int. J. Technol. Assess. Health Care 33, 586–590 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Health and Safety Executive. Review of Human Reliability Assessment Methods; (2009).

  • Boys, J. A. et al. Public perceptions on robotic surgery, hospitals with robots, and surgeons that use them. Surg. Endosc. 30, 1310–1316 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Johnson, J. & Rogers, W. Innovative surgery: the ethical challenges. J. Med. Ethics 38, 9–12 (2012).

  • Angelos, P. Ethics and surgical innovation: challenges to the professionalism of surgeons. Int. J. Surg. 11, S2–S5 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Hutchison, K., Rogers, W., Eyers, A. & Lotz, M. Getting clearer about surgical innovation: a new definition and a new tool to support responsible practice. Ann. Surg. 262, 949–954 (2015).

    Article 
    PubMed 

    Google Scholar 

  • B, H., S, D., W, O., I, C. & D, S. Harmonization of ethics in health technology assessment: a revision of the Socratic approach. Int. J. Technol. Assess. Health Care 30, 3–9 (2014).

    Article 

    Google Scholar 

  • Partington, A. & Karnon, J. It’s not the model, it’s the way you use it: exploratory early health economics amid complexity comment on ‘problems and promises of health technologies: the role of early health economic modelling’. Int. J. Health Policy Manag. 10, 36–38 (2020).

    PubMed Central 

    Google Scholar 

  • Rizan, C. et al. The carbon footprint of surgical operations: a systematic review. Ann. Surg. 272, 986–995 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Sullivan, R. et al. Global cancer surgery: delivering safe, affordable, and timely cancer surgery. Lancet Oncol. 16, 1193–1224 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Grutters, J. P. C. et al. Problems and promises of health technologies: the role of early health economic modeling. Int. J. Health Policy Manag. 8, 575–582 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bolton, W. S. et al. Disseminating technology in global surgery. Br. J. Surg. 106, e34–e43 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Payne, C. J. & Yang, G. -Z. Hand-held medical robots. Ann. Biomed. Eng. 42, 1594–1605 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Papadopoulou, A., Kumar, N. S., Vanhoestenberghe, A. & Francis, N. K. Environmental sustainability in robotic and laparoscopic surgery: systematic review. Br. J. Surg. 109, 921–932 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Micha, J. P., Rettenmaier, M. A., Bohart, R. D. & Goldstein, B. H. Robotic-assisted surgery for the treatment of breast and cervical cancers. JSLS 26, e2022.00014 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ramirez, P. T. et al. Minimally invasive versus abdominal radical hysterectomy for cervical cancer. N. Engl. J. Med. 379, 1895–1904 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Nitecki, R. et al. Survival after minimally invasive vs open radical hysterectomy for early-stage cervical cancer: a systematic review and meta-analysis. JAMA Oncol. 6, 1019–1027 (2020).

    Article 
    PubMed 

    Google Scholar 

  • US Food and Drug Administration. MAUDE – Manufacturer and User Facility Device Experience; https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfmaude/search.cfm

  • Hu, Y. & Strong, V. E. Robotic surgery and oncologic outcomes. JAMA Oncol. 6, 1537–1539 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Yaxley, J. W. et al. Robot-assisted laparoscopic prostatectomy versus open radical retropubic prostatectomy: early outcomes from a randomised controlled phase 3 study. Lancet 388, 1057–1066 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Parekh, D. J. et al. Robot-assisted radical cystectomy versus open radical cystectomy in patients with bladder cancer (RAZOR): an open-label, randomised, phase 3, non-inferiority trial. Lancet 391, 2525–2536 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Feng, Q. et al. Robotic versus laparoscopic surgery for middle and low rectal cancer (REAL): short-term outcomes of a multicentre randomised controlled trial. Lancet Gastroenterol. Hepatol. 7, 991–1004 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Garfjeld Roberts, P. et al. Research quality and transparency, outcome measurement and evidence for safety and effectiveness in robot-assisted surgery: systematic review. BJS Open 4, 1084–1099 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wolfenden, L. et al. Designing and undertaking randomised implementation trials: guide for researchers. BMJ 372, m3721 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Khan, D. Z. et al. Automated operative workflow analysis of endoscopic pituitary surgery using machine learning: development and preclinical evaluation (IDEAL stage 0). J. Neurosurg. 1–8 (2021).

  • van Amsterdam, B., Clarkson, M. J. & Stoyanov, D. Gesture recognition in robotic surgery: a review. IEEE Trans. Biomed. Eng. 68, 2021–2035 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Kiyasseh, D. et al. A vision transformer for decoding surgeon activity from surgical videos. Nat. Biomed. Eng. 7, 780–796 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, J. et al. Use of automated performance metrics to measure surgeon performance during robotic vesicourethral anastomosis and methodical development of a training tutorial. J. Urol. 200, 895–902 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Páez, A. et al. Beyond the RCT: when are randomized trials unnecessary for new therapeutic devices, and what should we do instead? Ann. Surg. 275, 324–331 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Shouhed, D., Gewertz, B., Wiegmann, D. & Catchpole, K. Integrating human factors research and surgery: a review. Arch. Surg. 147, 1141–1146 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Ijy, W., Lj, K. & Jc, N. A systematic review of the true benefit of robotic surgery: ergonomics. Int. J. Med. Robot. 16, e2113 (2020).

    Article 

    Google Scholar 

  • Collins, J. W. & Wisz, P. Training in robotic surgery, replicating the airline industry. How far have we come? World J. Urol. 38, 1645–1651 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Jayne, D. et al. Effect of robotic-assisted vs conventional laparoscopic surgery on risk of conversion to open laparotomy among patients undergoing resection for rectal cancer: the ROLARR randomized clinical trial. JAMA 318, 1569–1580 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Johnson, B., Sorokin, I., Singla, N., Roehrborn, C. & Gahan, J. C. Determining the learning curve for robot-assisted simple prostatectomy in surgeons familiar with robotic surgery. J. Endourol. 32, 865–870 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Pernar, L. I. M. et al. An appraisal of the learning curve in robotic general surgery. Surg. Endosc. 31, 4583–4596 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Vilallonga, R. et al. The initial learning curve for robot-assisted sleeve gastrectomy: a surgeon’s experience while introducing the robotic technology in a bariatric surgery department. Minim. Invasive Surg. 2012, 347131 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wijburg, C. J. et al. Learning curve analysis for intracorporeal robot-assisted radical cystectomy: results from the EAU Robotic urology section scientific working group. Eur. Urol. Open Sci. 39, 55–61 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kirkpatrick, D. L. Techniques for evaluating training programs. Train. Dev. J. 33, 78–92 (1979).

  • Sridhar, A. N., Briggs, T. P., Kelly, J. D. & Nathan, S. Training in robotic surgery—an overview. Curr. Urol. Rep. 18, 58 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Skjold-Ødegaard, B. & Søreide, K. Competency-based surgical training and entrusted professional activities—perfect match or a Procrustean bed? Ann. Surg. 273, e173–e175 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Carpenter, B. T. & Sundaram, C. P. Training the next generation of surgeons in robotic surgery. Robot Surg. 4, 39–44 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Mark Knab, L. et al. Evolution of a novel robotic training curriculum in a complex general surgical oncology fellowship. Ann. Surg. Oncol. 25, 3445–3452 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Corrigan, N. et al. Exploring and adjusting for potential learning effects in ROLARR: a randomised controlled trial comparing robotic-assisted vs. standard laparoscopic surgery for rectal cancer resection. Trials 19, 339 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Torrent-Sellens, J., Jiménez-Zarco, A. I. & Saigí-Rubió, F. Do people trust in robot-assisted surgery? Evidence from Europe. Int J. Environ. Res. Public Health 18, 12519 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Buabbas, A. J., Aldousari, S. & Shehab, A. A. An exploratory study of public’ awareness about robotics-assisted surgery in Kuwait. BMC Med. Inform. Decis. Mak. 20, 140 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rooshenas, L. et al. The QuinteT Recruitment Intervention supported five randomized trials to recruit to target: a mixed-methods evaluation. J. Clin. Epidemiol. 106, 108–120 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Salas, R. N., Maibach, E., Pencheon, D., Watts, N. & Frumkin, H. A pathway to net zero emissions for healthcare. BMJ 371, m3785 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Rasheed, F. N. et al. Decarbonising healthcare in low and middle income countries: potential pathways to net zero emissions. BMJ 375, n1284 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Meara, J. G. et al. Global Surgery 2030: evidence and solutions for achieving health, welfare, and economic development. Lancet 386, 569–624 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Garas, G. et al. Surgical innovation in the era of global surgery: a network analysis. Ann. Surg. 271, 868–874 (2020).

    Article 
    PubMed 

    Google Scholar 

  • K, H., J, J. & D, C. Justice and surgical innovation: the case of Robotic prostatectomy. Bioethics 30, 536–546 (2016).

    Article 

    Google Scholar 

  • Caro, J. J., Briggs, A. H., Siebert, U. & Kuntz, K. M. Modeling good research practices—overview: a report of the ISPOR-SMDM modeling good research practices task force-1. Value Health 15, 796–803 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Ramsey, S. D. et al. Cost-effectiveness analysis alongside clinical trials II—an ISPOR good research practices task force report. Value Health 18, 161–172 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Husereau, D. et al. Consolidated Health Economic Evaluation Reporting Standards 2022 (CHEERS 2022) statement: updated reporting guidance for health economic evaluations. BMC Med. 20, 23 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dreyer, N. A. Strengthening evidence-based medicine with real-world evidence. Lancet Healthy Longev. 3, e641–e642 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Kramer, D. B., Xu, S. & Kesselheim, A. S. How does medical device regulation perform in the United States and the European Union? A systematic review. PLoS Med. 9, e1001276 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cooper, M. A., Ibrahim, A., Lyu, H. & Makary, M. A. Underreporting of robotic surgery complications. J. Healthc. Qual. 37, 133–138 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Rajan, P. V., Kramer, D. B. & Kesselheim, A. S. Medical device postapproval safety monitoring: where does the United States stand? Circ. Cardiovasc. Qual. Outcomes 8, 124–131 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cipriani, A. et al. Generating comparative evidence on new drugs and devices after approval. Lancet 395, 998–1010 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Huot, L., Decullier, E., Maes-Beny, K. & Chapuis, F. R. Medical device assessment: scientific evidence examined by the French national agency for health—a descriptive study. BMC Public Health 12, 585 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sedrakyan, A. et al. Advancing the real-world evidence for medical devices through coordinated registry networks. BMJ Surg. Inter. Health Technol. 4, e000123 (2022).

    Article 

    Google Scholar 

  • Ficuciello, F., Tamburrini, G., Arezzo, A., Villani, L. & Siciliano, B. Autonomy in surgical robots and its meaningful human control: Paladyn. J. Behav. Robot. 10, 30–43 (2019).

    Article 

    Google Scholar 

  • Bilbro, N. A. et al. The IDEAL reporting guidelines: a Delphi consensus statement stage specific recommendations for reporting the evaluation of surgical innovation. Ann. Surg. 273, 82–85 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • van Workum, F. et al. Learning curve and associated morbidity of minimally invasive esophagectomy: a retrospective multicenter study. Ann. Surg. 269, 88–94 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Oshikiri, T. et al. Short-term outcomes and one surgeon’s learning curve for thoracoscopic esophagectomy performed with the patient in the prone position. Surg. Today 47, 313–319 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Zeuschner, P. et al. Three different learning curves have an independent impact on perioperative outcomes after robotic partial nephrectomy: a comparative analysis. Ann. Surg. Oncol. 28, 1254–1261 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Le Morvan, P. & Stock, B. Medical learning curves and the Kantian ideal. J. Med. Ethics 31, 513–518 (2005).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dixon, F. & Keeler, B. Robotic surgery: training, competence assessment and credentialing. Bulletin 102, 302–306 (2020).

    Article 

    Google Scholar 

  • Chen, R. et al. A comprehensive review of robotic surgery curriculum and training for residents, fellows, and postgraduate surgical education. Surg. Endosc. 34, 361–367 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Jamjoom, A. A. B. et al. Autonomous surgical robotic systems and the liability dilemma. Front. Surg. 9, 1015367 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • van Wynsberghe, A. in Robotics, AI and Humanity: Science, Ethics and Policy (eds. J. von Braun et al.) 239–249 (Springer International Publishing, 2021).

  • Catchpole, K. et al. Safety, efficiency and learning curves in robotic surgery: a human factors analysis. Surg. Endosc. 30, 3749–3761 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Poulsen, J. L., Bruun, B., Oestergaard, D. & Spanager, L. Factors affecting workflow in robot-assisted surgery: a scoping review. Surg. Endosc. 36, 8713–8725 (2022).

    Article 
    PubMed 

    Google Scholar 

  • van Dalen, A. S. H. M. et al. Analyzing and discussing human factors affecting surgical patient safety using innovative technology: creating a safer operating culture. J. Patient Saf. 18, 617–623 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Messick, S. Validity. in (ed. R. L. Linn) Educational Measurement 3rd ed. pp. 13–104 (American Council on education and Macmillan, 1989).

  • Bai, F. et al. More work is needed on cost-utility analyses of robotic-assisted surgery. J. Evid. Based Med. 15, 77–96 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Schneider, M. A. et al. Inequalities in access to minimally invasive general surgery: a comprehensive nationwide analysis across 20 years. Surg. Endosc. 35, 6227–6243 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Drew, J., Christie, S. D., Rainham, D. & Rizan, C. HealthcareLCA: an open-access living database of health-care environmental impact assessments. Lancet Planet. Health 6, e1000–e1012 (2022).

  • Roodbeen, S. X. et al. Evolution of transanal total mesorectal excision according to the IDEAL framework. BMJ Surg. Interv. Health Technol. 1, e000004 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Morrisey, Z. S. et al. Transition to robotic total knee arthroplasty with kinematic alignment is associated with a short learning curve and similar acute-period functional recoveries. Cureus 15, e38872 (2023).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kelkar, D. S., Kurlekar, U., Stevens, L., Wagholikar, G. D. & Slack, M. An early prospective clinical study to evaluate the safety and performance of the versius surgical system in robot-assisted cholecystectomy. Ann. Surg. 277, 9–17 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Bell, S. W. et al. Improved accuracy of component positioning with robotic-assisted unicompartmental knee arthroplasty: data from a prospective, randomized controlled study. J. Bone Joint Surg. Am. 98, 627–635 (2016).

    Article 
    PubMed 

    Google Scholar 

  • link